In this presentation I aim to elaborate on the statement that the form of scientific communication is an important ingredient in the development of science itself. Entering a period of new - electronic- scientific communication channels it is timely to reconsider the existing culture as well as to try and develop a more visionary outlook for the future. Despite the great technical developments in electronic publishing I will only superficially deal with the actual state of the art. At the moment we see a huge operation in which all printed material is being converted to an electronic form. The first round of this operation proves already that the crucial classical problems of storage and logistics have been now essentially overcome. The problems shift from where to store information to where to find it. The development of digital libraries, distributed storage and global access to information are all well known. In this paper I prefer to develop a bold vision of the intrinsic novel avenues in scientific communication the electronic revolution might induce.
I will summarize those aspects of scientific communication that are crucial
for science and their demands in terms of technology. I then will dwell on the
first big bang in scientific communication: the revolution of moving type and
the printing press. Subsequently I make a small detour in the direction of the
various human mental perceptions and the possibilities integrating them into
the communication process. I then touch upon the problem of metaphor in science
as a vehicle of understanding. At the end, the claim that with a change of presentation
science itself shall change will be emphasized.
For clarity, I intend to use the word 'digital' in the strictest sense as the
opposition to the notion analog, whilst the words 'electronic' or 'binary' will
be used for the bitwise, computer based, representation and storage of information.
In discussing the communication of science it is important to stress clearly
those societal functions (authors' and readers' needs) in the communication
process which are technology independent, and consider them apart from those
which are technology driven (kir96). These societal functions
change face with changing technology but they do not change character. Having
said that, I immediately make the reservation that I speak about modern western
culture and certainly not about societies where art and science are an anonymous,
often communal, activity.
First of all, the originator or author needs to secure his/her intellectual
ownership; this can find its expression in priority claims or signatures on
the work, etc. With regards to this point it is interesting to note that it
was the printing press, with its capacity of uniformal replication of works,
that broke the seal of secrecy which hid away so many investigations from the
general public (eam90). This aspect finds its expression
in the registration function of the publishing process. It is closely related
with the reward systems in science.
Secondly, we have the need for validation and certification. The receiver wants
to be able to asses the work before consuming it. The (peer) review system and
the brand names of scientific journals are the clearest expression thereof.
Thirdly, we have the awareness function; material has to be known. An important
and often overlooked aspect is that awareness is not necessarily the listing
or prompting of new articles. Awareness is the need for relevant information
(of any time and kind) for the particular query at a certain moment in the research
process.
Finally, we have the archival function which is closely related with the previous
one and which deals with the storage, indexing, accessibility and retrievability
of relevant material.
Discussing changing technology we have to relate all activities with the above
mentioned functions.
We have to make a clear distinction between various forms of scientific information,
as the different forms often fulfill different roles as well as touching on
different kinds of information. At the most basic level we have the direct personal
interaction between individuals. Teachers with their pupils strolling down Athens'
streets, the school class in modern times, as well as, the colloquial discussion
at the laboratory bench, at the coffee machine or in the pub. On this level
speech communication and body language form an integrated whole. The context
of the spoken word is given by gestures, speech tonality, the possibility of
explanatory drawings, exemplary demonstrations, etc. Let us remind ourselves
of Plato's famous warnings against the limitations of written speech in Socrates
discussion with Phaedrus. Here we find strong arguments for the need of a proper
interaction between interlocutors in order to obtain understanding. " Those
who acquire it (writing) will cease to exercise their memory and become forgetful;
they will rely on writing to bring things to their remembrance by external signs
instead of on their own internal resources. What you have discovered is a receipt
for recollection, not for memory" (275a). And: "...written words; you might
suppose that they understand what they are saying, but when you ask them what
they mean by anything they simply return the same answer over and over again
(275d) (pla73, pp.96-97). Until now this type of information
and knowledge exchange was only possible when the interlocutors were all together
at the same place at the same time.
With the emergence of writing (together with an archiving and a postal system)
it became possible to exchange information with others, independent of their
location and independent of the time the receiving party consumes the message.
It is not the place here to dwell at length on the fascinating story of the
emerging of writing and the fundamental breakthrough the phonological alphabet
meant for the possibility of unambiguous transfer of information in linguistic
form (goo68). It is however crucial to stress that it was
written language as transporter of scientific information which enabled us to
exchange scientific information and knowledge, to accumulate it and to permanently
recycle the same information and knowledge in an ever changing environment of
scientific insights and outlooks.
The essential role of the printing press as an agent for the establishment
of modern science is well described by Eisenstein (eis79).
Following her we list some characteristics of this revolution, which we compare
with the enrolling electronic breakthrough. A more elaborate discussion is given
by Kircz (kir98).
i) The reusability of old works or parts thereof
i.i) The printing press quickly induced massive reprinting of old and, often
in the strict scientific sense, obsolete works. It unified the widely scattered
knowledge and data repositories of humankind. As Eisenstein clearly points out,
this general availability of the human intellectual heritage was needed since
the universal mastering and assimilation of all previous knowledge was necessary
before it could be properly surpassed (p.516). This point is again clearly stressed
by Eamon (eam94) in his book dealing with the dissemination
of old books of secrets.
At the moment we are witnessing all kinds of works becoming available in electronic
form. It indicates that in the electronic era, more than ever before, the availability
of all previous scientific reporting, discussions and controversies, are available
as permanent sources for referencing, inspiration and, where needed, dismissal.
It also means that parts of old works can be easily integrated into new works.
Hence, a new period of general information reevaluation can begin.
i.ii) The printing press introduced the development of dictionaries, indexes,
bibliographies, compendia, catalogues, and reference works. In other words,
the emergence of proper registration functions and systems. We see that history
is repeating itself now; at present one of the largest activities on Internet
is exactly this most elementary level of registration and indexing, as demonstrated
by all the various Web crawlers, search engines and so forth.
ii) An enormous growth in the dissemination of identical information
ii.i) Next to the obvious role in advancing the education and general cultural
level of society, printing also enhanced the integrity of the information as
such; that is information deteriorated due to heavy use, damage or aging can
be checked against other copies of the same edition.
The availability of many identical copies allowed serious scientific discourse
and exchange of views based on exactly the same information. This aspect became
an essential ingredient of scientific development (including the concepts of
intellectual ownership and certification) and the development of concepts of
integrity and truths. This can be exemplified, as Olson does, in Luther's fight
against the idea that "statements required interpretation by either scribes
or clerics". Luther stated that the meaning of scripture depended not upon the
dogmas of the church, but upon a "deeper reading of the text". So text became
a source of meaning in itself (ols77). As will be discussed
below, we can now also circulate non-textual information and the question of
integrity and meaning will only mount.
ii.ii) An important related aspect is the use of books for self-study overtaking
the old master-apprentice relationship. Knowledge is no longer coupled to a
person but is easily available for the independent student. In an electronic
environment "interactive textbooks" will complete this historical line with
courses adaptable to the various levels and needs of the reading and learning
students and scientists.
iii) The emergence of standardization of presentation and judgement
In the context of the present article this point will not be dealt with. However,
the fact that information can be distributed in identical form and independent
of time and place forces strong needs for tools and methods to compare the various
aspects of the material, hence drives to standardization.
iv) The development of typography
iv.i) The emergence of type fonts in all possible languages such as Arabic,
Greek, Hebrew, etc. secured by this typographical fixity old and/or threatened
knowledge. In a binary memory analog information can also be kept safe and secured.
iv.ii) Increasing familiarity with regularly numbered pages (in Arabic numbers),
punctuation marks, section breaks, running heads, indices helped to order the
thoughts of all readers, whatever their profession or craft. In the electronic
era, new forms of document and file structuring are becoming essential "readers"
aids.
v) New forms of data handling
Large-scale data-collections were subject to new forms of use. Here, of course,
the printing press reached its highest peak with the development of ingenious
and complicated tables, graphs, and fold-outs. The gigantic possibilities of
binary representations will create completely new presentation capabilities
and traditions.
vi) The possibility of error correction
The invention of errata allowed the continuing improvement of works in subsequent
print runs. In an electronic environment up-date can be a dynamic process. This
points to the notion that collectively working on one article in an electronic
environment does not have to lead to one homogeneous text. Also an electronic
document does not demand a local (group of) author(s). Using electronic networks,
geographically separated authors can work together on the same article. This
has to be arranged in such a way that each change or addition can be properly
registered and assigned to a particular partner. Real integrated discussion
can become the hallmark of a modular electronic article.
The result of the tremendous breakthrough of the printing press is that our scientific culture is completely based on written documents. Elsewhere I elaborated on the expected change of the form of the document in an electronic environment (kir98).
We now can pose the question whether written language is really the only way of scientific expression or do other possibilities exist as well? As mentioned above, in an oral society all kinds of bodily expressions augment and contextualize the spoken word. Obviously in an electronic environment we can mimic this situation with video and audio aids. The actual development of software already points in that direction. However my thesis here is that this is only a simple (although not technically trivial) step forward in which we try to reclaim the lost context the Plato school cherished. In order to go beyond this point we have to deal firstly with the problem of sensory perception and their mental representations and the capabilities of modern electronics to mimic, store and manipulate the various human sensory perceptions. Then we discuss the role of metaphors in the development of science.
Let us start at the fundamental level, stating that all knowledge is based on sensory perceptions and the capability to communicate these sensory experiences to other humans. Following Dretske (dre81) it is illuminating to make a distinction between the analog form of sensory perception and the digital form of semantic, cognitive significance of information. An analog perception can be felt, experienced, etc. and can be transmitted to others only by having the second person experiencing the same sensation. Opposite to that the essence of digital information, being well defined cognitive content, is that it is an abstract linguistic notion which we can manipulate and transfer as a knowledge token. The essence of language is its abstract character that transposes the direct sensory sensations into well defined semantic notions. In that sense, linguistic utterances and writing enables the modelling of bodily experienced impressions. An interesting point is that in explaining phenomena of a certain kind we often use familiar descriptions of another kind. We "visualize" heat with a high level of mercury in a thermometer and cold with a low level. Different kinds of sensory perceptions, plains of experience, are constantly used as mutual comparisons and models.
The basis of human understanding of nature is its interaction with the surrounding.
Despite our characteristic arrogance about the place of humankind in nature
we have to accept that we are only a particular result of evolution with only
a particular set of sensory capabilities. These limited sensory capabilities
find their expression in mental representations which are the research field
of cognitive psychology and cognitive sciences in general. In a penetrating
series of essays Jackendorff (jac95) discusses the concept
of modularity of the mind and mental representations. The importance of such
an analytical approach is that we can begin to simulate in an electronic environment
every faculty separately before we try and understand their mutual independencies
and interplays. Jackendorff suggests the faculties of the mind, listed below,
which he relates to conceptual structures, 3D models structures and body representations.
The conceptual structure is considered to be the expression of the language
faculty and linked with the 3D model structure. The 3D model structure is considered
the expression of the visual faculty and in its turn further linked to the body
representation. In greater detail we have:
The interesting question is how well we will be able to approach these faculties in an electronic "virtual reality" environment. If an author is able to simulate the various analog types of perceptions in electronic (binary) form, the reader of the transmitted message can compare his/her own experience of the same sensory experiences, with the interpretation of the originator. Although this might sound a bit far off, the reality of present day computing is already as far as so-called real audio and video via Internet and the simulation of haptic experiences in virtual reality test environments. So, electronic publishing seen this way extent the capability to preserve the integrity of completely different kinds of information over multiple copies independent of time and place.
Apart from the digital representation of the most obvious human perceptions; speech, written language and visual information, one can question what more can be represented, modelled, in digital form. A fascinating idea would be the development of virtual reality in simulating non-human perceptions. With all kind of tricks we are already able to represent e.g. vision in wavelengths areas that are outside the reach of the eye, or ultra-sonic sounds. But how would our scientific intuition develop if we could equip ourselves with different sensors such as gravity sensors, that are suggested to exist in plants, the magnetic memories of sea turtles (sea94), or even further away, with the electric senses? In the last case, as with the electric eel or the Nile catfish the echos of weak electric pulses discharged by the fish are used to determine the environment. The interesting point is, not only, that we have here another way of "viewing" the environment, which is very useful for all kind of applications, but that the vision of the world from such an electric point of view is very different. As an object is further away, the image gets broader and spreads out over the whole body of the fish: a kind of inverted focussing (wic96). This certainly must induce a very different world view.
The relevance of this detour in sensory perception in our discourse is that it shows that in nature there exists a manifold of different ways of interpreting the same physical reality, which certainly leads to different social behaviour. Our understanding of the world is an interplay between our analog sensory perceptions and our digital mental cognitive abstractions. The implicate now is, that with the knowledge of different sensory representation schemes, we can simulate them in an electronic publishing environment and can therewith expand the human outlooks on reality which after all is the basis for its desire to change the world. In that sense it is a further elaboration of McLuhan's credo Understanding media: The extension of man (mcl64).
Every scientific theory is a model, a metaphor, for reality. Among philosophers
of science the role of model, analog and metaphor is considered an important
tool for communicating and understanding (the advancement of) human knowledge
(for an overview of this discussion see lea74). Mary Hesse
(hes65) especially started a more formal approach of the
interaction view of the metaphor. In using metaphors, the ideas and implications
from a primary system are transferred to a secondary one, therewith illuminating
different aspects and suppressing others. In the interaction view both systems
are influenced by the use of the metaphor and both reference systems assimilate
in a certain sense. In the standard example of the sentence 'man is a wolf',
men are seen to be more like wolves after the wolf metaphor is used, and wolves
seem to be more human. (hes65, p.252).
An important aspect of the explanatory role of metaphor is that we can link
known experiences in a familiar field of understanding with novel experiences
under investigation. A new scientific phenomenon can be "pictured" in the framework
of a commonly accepted model; like the planetary model of the atom in earliest
period of modern atomic physics.
Following this type of reasoning, scientific theories can be considered as shifting
plains of understanding on which physical reality is mapped. The important difference
with Plato's cave is that we can have a multitude of projections, of a completely
different nature. So the refinement of our understanding of physical reality
is more a matter of integrating different mappings (in completely different
environments, or co-ordinate systems) than a diligent following of a single
deterministic line of reasoning. With the use of models and metaphors, we can
envision scientific knowledge as an ever changing pattern of interacting projections
of physical reality onto known cognitive structures of linguistic understanding.
An important aspect is that we first have to articulate the various sensory
perceptions in order to be able to explicate these perceptions in linguistic
form. A simple example is that in the period prior to the capability of mixing
printed text and pictures, the text served as single medium of communication
between disjoint interlocutors, taking great pains to describe e.g. visual phenomena.
With the possibility of picture printing (blocks or plates) the "illustration
to the text" becomes common, given back some analog perception (feeling) to
the abstract (cognitive) linguistic description of the phenomenon. With the
full capability of mixing text and pictures in electronic form we are reaching
a situation where pictures can become primary information sources again, whilst
text is added to explicate the pictures in the model or theory of the author.
Especially in fields where the picture still hides unknown phenomena to be scientifically
understood the primacy and integrity of the experimental data is kept whilst
in the scientific arena competing theories fight for the best understanding
of the data. That this an universal problem is illustrated by the article of
Bogen and Woodward in which they emphasise the ontological status of phenomena
and state: "it should be clear that we think of particular phenomena in the
world as belonging to the natural world itself and not just to the way we talk
about or conceptualize that order"(bog88, p321).
Let us now take the idea of the metaphor further into the electronic era. Not only are we becoming able to mimic most sensory perceptions, which after all is in itself not more then an enhancement of the integrity of transmitted and stored information. A more fascinating challenge is that we can work out theoretical, artificial, models to guide the mind into unknown areas. Already in computational physics we experience the possibility to make real-time simulations of model systems, which indeed provide us with unexpected new ideas and real novel physics. In computational mathematics we see that the whole idea of a mathematical proof gets a face lift, as some theorems can be proven by exhaustive computational evidence, without any formal logical equivalence. A familar example is the so-called four colour problem. This states that in any two dimensional (e.g. geographical) map, only four colours are needed to separate each domain unambigiously. It is obviously out my reach to forecast what serious simulations using the representation of all kinds of faculties, discussed in this paper, will reveal. The only firm conviction can be aired that changing representations will indeed induce completely novel science.
With the present state of the art of electronic publishing we can only see the shadows forecasting a complete overhaul of scientific communication. With the integration of analog information into the communications, analog information which will be the same for author (originator) and reader (consumer), scientific discourse will deepen and change. The basic cognitive question of how the mind creates knowledge, articulateing concepts linguistically, out of bodily experiences remains unsolved. As Ong eloquently said:"The paradox lies in the fact that the deadness of the text, its removedness from the living human life world, its rigid visual fixity, assures its endurance and its potential for being resurrected into timeless living contexts by a potentially infinite number of readers" (ong82. p.81). The only thing we can do is to investigate further the various distinct sensory faculties and mental representations in order to make them explicitly interchangeable in scientific communication, as a first step to further understanding the world.
Coming back to the daily life of crummy operating systems and commercial Internet hype the following points have to be addressed in practice.